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Abstract 20 

Accurate monitoring and quantification of the structure and function of semiarid 21 

ecosystems is necessary to improve carbon and water flux models that help describe how these 22 

systems will respond in the future. The leaf area index (LAI, m2 m-2) is an important indicator of 23 

energy, water, and carbon exchange between vegetation and the atmosphere. Remote sensing 24 

techniques are frequently used to estimate LAI, and can provide users with scalable 25 

measurements of vegetation structure and function. We tested terrestrial laser scanning (TLS) 26 

techniques to estimate LAI using structural variables such as height, canopy cover, and volume 27 

for 42 Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young) 28 

shrubs across three study sites in the Snake River Plain, Idaho, USA. The TLS-derived variables 29 

were regressed against sagebrush LAI estimates calculated using specific leaf area 30 

measurements, and compared with point-intercept sampling, a field method of estimating LAI. 31 

Canopy cover estimated with the TLS data proved to be a good predictor of LAI (r2 = 0.73). 32 

Similarly, a convex hull approach to estimate volume of the shrubs from the TLS data also 33 

strongly predicted LAI (r2 = 0.76), and compared favorably to point-intercept sampling (r2 = 34 

0.78), a field-based method used in rangelands. These results, coupled with the relative ease-of-35 

use of TLS, suggest that TLS is a promising tool for measuring LAI at the shrub-level. Further 36 

work should examine the structural measures in other similar shrublands that are relevant for 37 

upscaling LAI to the plot-level (i.e., hectare) using data from TLS and/or airborne laser scanning 38 

and to regional levels using satellite-based remote sensing. 39 

 40 

Keywords: Artemisia tridentata, convex hull volume, ground-based LiDAR, leaf area index, 41 

terrestrial laser scanning, voxel volume  42 
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1. Introduction 43 

Dryland ecosystems, including grasslands, shrublands, and savannas, occupy roughly 44 

40% of the Earth’s land surface (Meigs, 1953) and are particularly sensitive to climate and land 45 

use change (Backlund et al., 2008). Vegetation dynamics in dryland ecosystems such as the 46 

sagebrush-steppe in the Great Basin of the United States will likely be affected by climate 47 

change through elevated levels of CO2, changes in air temperature, and the timing and 48 

distribution of precipitation (Bates et al., 2006; Kwon et al., 2008). In turn, woody plants such as 49 

sagebrush exert a major influence on dryland ecosystem processes such as evapotranspiration 50 

and carbon and nutrient cycling (Breshears, 2006; Yang, J. et al., 2012). Water and carbon fluxes 51 

in sagebrush are strongly related to plant leaf area index (LAI), a biophysical measure of the 52 

layers of leafy vegetation and an indicator of photosynthetic activity and net primary production 53 

(Bonan, 1993; Bussotti and Pollastrini, 2015; Smith et al., 1990). Changes in water and carbon 54 

cycling of the sagebrush-steppe in response to climate change will ultimately have land 55 

management consequences related to forage production, habitat quality and other ecosystem 56 

services (Polley et al., 2013). Importantly, measurement or accurate estimation of LAI is 57 

necessary for modeling and understanding water and carbon cycling in the sagebrush-steppe. 58 

Due to their vast areal extent across North America, sagebrush (Artemisia tridentata 59 

Beetle)-dominated rangelands potentially represent a substantial carbon sink (Hunt Jr. et al., 60 

2003; Prater and DeLucia, 2006). Understanding the spatiotemporal variability in sagebrush LAI 61 

is important for accurately predicting carbon budgets, even at the global scale (e.g., with global 62 

circulation models [GCMs]), under current and climate-change scenarios. Even within 63 

subspecies (e.g., Wyoming big sagebrush, Artemisia tridentata subsp. wyomingensis Beetle & 64 

Young), sagebrush LAI likely varies among plants, stands, and even regions as well as among 65 
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seasons and years. Data sets of sagebrush LAI for extensive areas and differing seasons are 66 

scarce because shrub LAI data are difficult and expensive to acquire with conventional field 67 

techniques (e.g., point-intercept sampling, light-intercept sensors, or destructive leaf harvest) and 68 

linkages that would promote upscaling between field measures and remotely-sensed estimates 69 

have not been established for shrublands (Hufkens et al., 2008). Consequently, accurate 70 

modeling of the spatiotemporal variability of sagebrush LAI is inhibited by a paucity of data to 71 

develop and validate such models over space and time. Without a better understanding of this 72 

spatiotemporal variability in sagebrush leaf area, accurate predictions of climate-change effects 73 

on sagebrush itself, and on water and carbon flux responses in sagebrush-dominated rangelands 74 

are not possible.  75 

Efficient and accurate assessment techniques are important for facilitating sagebrush LAI 76 

data collection over extensive areas and among differing time periods. Many methods have been 77 

developed to estimate LAI in a variety of ecosystems. The most accurate estimates come from 78 

direct measurements that require destructive sampling (Beerling and Fry, 1990). Despite the 79 

advantages in increased accuracy with destructive sampling, it is time-intensive and impractical 80 

at scales relevant to modeling the impacts of climate change. Other direct measurements involve 81 

developing allometric equations related to easily measured vegetation characteristics such as 82 

height or canopy cover, or field techniques such as point-intercept sampling (Bonham, 1989; 83 

Clark and Seyfried, 2001). Indirect measurements usually involve light interception techniques 84 

with hemispherical photography (Jonckheere et al., 2004), or commercially available instruments 85 

such as the Li-Cor® LAI-2000 Plant Canopy Analyzer (Mussche et al., 2001). However, indirect 86 

estimates have proven challenging in sagebrush-dominated ecosystems because light is 87 
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disproportionately blocked by woody plant material, which leads to overestimation of LAI 88 

(Finzel et al., 2012). 89 

 Satellite remote sensing studies have demonstrated direct relationships between LAI and 90 

vegetation indices (Danson et al., 2003; Qi et al., 2000) such as the normalized difference 91 

vegetation index (NDVI) and the modified soil-adjusted vegetation index (MSAVI, Qi et al., 92 

1994). These spectral indices leverage biophysical knowledge of the “red-edge” where 93 

photosynthetic absorption in the red spectrum and high reflectivity in the near-infrared correlate 94 

to green, leafy biomass or LAI (Turner et al., 1999). However, the relationship between 95 

vegetation indices and LAI breaks down in species with a large woody component (Hunt Jr. et 96 

al., 2003) and in dryland ecosystems in general because they contain weak vegetation signals 97 

overpowered by high soil reflectance and complex scattering (Kremer and Running, 1993; 98 

Mundt et al., 2006; Okin et al., 2001; Qi et al., 1994).  99 

Terrestrial laser scanning (TLS) provides some advantages over standard field techniques 100 

for measuring or estimating sagebrush LAI, such as offering a link between ground-based 101 

measurements and airborne remotely-sensed estimates (Hopkinson et al., 2013; Vierling et al., 102 

2013) and reduced personnel time cost per unit area sampled. Consequently, TLS could provide 103 

an effective means of acquiring the sagebrush LAI data needed to scale to satellite-based remote 104 

sensing and thus properly develop and validate ecological and hydrological models required to 105 

accurately understand and predict the consequences of climate change. To investigate the use of 106 

TLS for estimating LAI of Wyoming big sagebrush, a dominant sagebrush subspecies in the 107 

Great Basin, we: (1) assess the accuracy of using TLS data to derive vegetation metrics for 108 

estimating sagebrush LAI by comparing TLS metrics to those derived from destructive 109 

harvesting and leaf area field measurements; and (2) contrast the accuracy of the TLS-derived 110 
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sagebrush LAI with the field tested method of point-intercept sampling across three study sites in 111 

the Snake River Plain, Idaho, USA.  112 
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2. Methods 113 

2.1. Study Area 114 

The study was conducted at three sites across the Snake River Plain in southern Idaho, 115 

USA that are characteristic of the Snake River Plain and Northern Basin and Range ecoregions 116 

of the Great Basin; Reynolds Creek Experimental Watershed (RCEW), Hollister, and Snaky 117 

Canyon Wash (SCW). These sagebrush-grassland sites are dominated by Wyoming big 118 

sagebrush, bluebunch wheatgrass (Pseudoroegneria spicata A. Löve), and Sandberg bluegrass 119 

(Poa secunda J. Presl). The RCEW study site is located in Owyhee County (43°10’32”N, 120 

116°43’2”W; elevation: 1367 m) and has average annual precipitation of 271 mm and mean 121 

annual air temperature of 8.8 oC. Soils at RCEW consist of well-drained gravelly and silt loams 122 

from the Willhill-Cottle-Longcreek and Arbidge-Owsel-Gariper soil series complexes. The 123 

Hollister study site (Twin Falls County, Idaho, USA; 42°18’58”N, 114°41’34”W; elevation: 124 

1448 m) has average annual precipitation of 256 mm and mean annual temperature of 8.8 oC. 125 

The soil at Hollister is well-drained and consists of Chuska very stony loam and Shabliss silt 126 

loam. The SCW study site (Clark County, Idaho, USA; 44°4’23”N, 112°38’14”W; elevation: 127 

1529 m) has average annual precipitation of 206 mm, and mean annual temperature of 6.5 oC. 128 

Soils at SCW are somewhat excessively drained, gravelly loams from a complex of the 129 

Whitecloud, Simeroi, and Paint soil series. Climate data were sourced from the Western 130 

Regional Climate Center operated by the Desert Research Institute (WRCC, 2009), and soil data 131 

from Web Soil Survey of the Natural Resources Conservation Service (Soil Survey Staff, 2013).  132 

 133 
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2.2. Field Sampling 134 

Terrestrial laser scanning, LAI point-135 

intercept measurements, and destructive biomass 136 

sampling of Wyoming big sagebrush (hereafter 137 

referred to as sagebrush) was conducted at 138 

RCEW, Hollister and SCW from September to 139 

October 2012. Terrestrial laser scanning and 140 

destructive biomass sampling methods are 141 

detailed in Olsoy et al. (2014). Scanning was 142 

performed with a Riegl VZ-1000 TLS instrument 143 

with a 1550 nm near-infrared laser with 144 

waveform processing, 8 mm accuracy at 100 m 145 

range (Riegl, 2015), and a beam diameter of 2 146 

mm at 6.67 m range (Yang, R. et al., 2012). 147 

Three plots were established at each study site 148 

and each plot contained two 25 m2 sub-plots. The 149 

sub-plots all included two or three marked 150 

sagebrush (n = 15 per site, total n = 45) and were 151 

scanned from two opposing scan positions at a 152 

mean distance of 5.7 m from each sagebrush 153 

plant with laser pulse rate set to 300 kHz and an 154 

angular stepwidth of 0.01°, resulting in a minimum point spacing of 2 mm (Fig. 1). Scans were 155 

georeferenced using four reflective targets whose positions were captured using a survey-grade 156 

Figure 1. Point cloud of a sagebrush with green and 

non-green classified points (A); voxelized green 

volume (B); and convex hull green volume (C). 
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GPS unit. After scanning the sub-plots, a 1-m2 quadrat (n = 42) was fit around each sagebrush 157 

within the sub-plots and point-intercept sampling was applied to estimate LAI (Clark and 158 

Seyfried, 2001). The sagebrush LAI point-intercept sampling approach uses a 20-pin frame with 159 

five equally spaced frame locations within the 1 m2 quadrat for a total of 100 attempts m-2. This 160 

method uses a sharpened pin that is pushed through the sagebrush canopy and one records the 161 

number of pin-point contacts or “hits” with green foliage. The number of green hits is divided by 162 

the number of attempts to give an estimate of LAI (Fig. 2). Multiple point frames may be used 163 

for shrubs larger than 1 m2. However, in this study, shrubs that did not fit within a single quadrat 164 

(i.e., > 1 m2) were excluded from the LAI analysis due to limitations of comparing multiple point 165 

frames with metrics from a single TLS point cloud. 166 

After point-intercept sampling, each sagebrush was destructively sampled by cutting the 167 

sagebrush at ground-level and collecting the plant matter into plastic bags for temporary storage. 168 

All samples were sorted to separate the green biomass; which included leaves, green stems, and 169 

seeds, from the woody biomass. The sorted samples were oven-dried at 65 °C for 48 h or until a 170 

constant dry weight was reached and recorded. The biomass of the green and woody components 171 

were recorded separately for each sagebrush plant (Olsoy et al., 2014). 172 

In January and February 2014, sagebrush leaves were collected at the three sites to obtain 173 

site-wide specific leaf area (cm2 g-1, SLA) for estimation of LAI from field-measured biomass. 174 

The sagebrush leaf data collection consisted of collecting a total of 400 fresh leaves from each 175 

study site. For each study site, 100 leaves were collected at random from multiple shrubs (5–15 176 

shrubs) at each of the three plots and an additional 100 leaves were randomly collected from all 177 

of the combined plots. The combined sample for each study site was maintained separately and 178 

later used to independently validate mean SLA values. 179 
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 180 

Figure 2. Photo of point-intercept sampling being performed in the field (A). A schematic showing the number of 181 

attempted pin-point hits (crosses) in a 1 m2 quadrat with theoretical distribution of green hits (grey circles) (B). 182 

Regression results for point-intercept LAI plotted against specific leaf area LAI (C). 183 

 184 

2.3. Lab Analysis 185 

Sagebrush specific leaf area was calculated for shrubs located at all nine of the plots 186 

(RCEW, Hollister, and SCW) following standard procedures outlined by Breda (2003). Briefly, a 187 

sub-sample of leaves collected from sagebrush plants at the study sites were used to calculate SLA, 188 

which is a site-specific ratio of leaf area to dry leaf biomass (Chiarriello et al., 1989). Multiplying 189 

the measured dry leaf biomass of a plant by the site-specific SLA provides an estimate of leaf area 190 

for each sampled plant.  191 
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Collected leaves were stored at 0 °C until processed 1–2 days later. The total surface area 192 

(cm2) of all collected leaves for each individual or combination plot was determined with a Li-193 

Cor 3100 Leaf Area Meter (1 mm2 resolution) with an error of ±1% for a 10 cm2 area. The leaf 194 

area meter was calibrated with the factory supplied calibration disk between runs. The leaf 195 

samples were bagged by plot, oven-dried in a laboratory-grade gravity convection oven for 48 h 196 

at 80 °C, and weighed to the nearest thousandth of a gram. The SLA of each plot was then 197 

calculated as the quotient of surface area and oven-dry weight. The site-specific SLA values 198 

were multiplied by the green biomass dry-weight of each sagebrush plant to obtain an estimated 199 

leaf area and divided by the sampled ground surface area to convert into a dimensionless 200 

parameter of LAI. The point-intercept LAI estimates and TLS-derived vegetation metrics were 201 

then compared to this SLA-derived LAI estimate.  202 

Specific leaf area is often used as an indicator of photosynthetic efficiency or resource 203 

allocation by plants (Reekie and Reekie, 1991). Stressors such as low water availability and 204 

animal browsing can cause plants to compromise between photosynthesis and growth (Hoffman 205 

and Wambolt, 1996). We assumed that SLA would not differ between 2012, when field sampling 206 

was performed, and 2014, when SLA sampling was performed. This assumption is similar to 207 

another study which considered SLA to be consistent at a site across different years (e.g., Turner 208 

et al., 1999). SLA is largely governed by site-specific properties, such as soil fertility, solar 209 

insolation, and precipitation (Ackerly et al., 2002; Ordoñez et al., 2009), which may differ 210 

between years. 211 

 212 
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2.4. TLS Analysis 213 

The scans from the TLS were registered together in RiSCAN Pro software (Riegl Laser 214 

Measurement Systems GmbH, Horn, Austria). Each shrub was manually delineated to remove 215 

laser hits or points on the ground surface and on non-target vegetation. The point cloud was post-216 

processed to remove noisy points that represent partial or false returns using a Riegl-specific 217 

metric referred to as “deviation”, which is a measure of the difference in pulse shape of the laser 218 

return compared to the emitted pulse (Greaves et al., 2015; Pfennigbauer, 2010). All points were 219 

used to calculate shrub height and canopy cover. We determined canopy cover by calculating the 220 

percent of the ground surface covered using a minimum convex polygon of the TLS points. 221 

Shrub height and canopy cover were multiplied together as an alternative to voxel and convex 222 

hull volume. The remaining points were classified using the methods described in Olsoy et al. 223 

(2014), where points with laser-reflectance values below a given threshold are classified as 224 

green, or photosynthetically active (see also Beland et al., (2014) for similar TLS reflectance-225 

based classification of leaf points). The subset of green-classified points was then used to 226 

calculate canopy volume using a voxel-based approach and a 3-D convex hull approach (Olsoy 227 

et al., 2014). Voxels are volumetric pixels of a given size (e.g., 1 cm3) that are either counted (1) 228 

or not (0) based on whether they contain points (Greaves et al., 2015; Hosoi and Omasa, 2006; 229 

Olsoy et al., 2014). The convex hull approach uses the outermost set of points to create a volume 230 

(Barber et al., 1996; Olsoy et al., 2014). These two approaches alternatively provide a minimum 231 

(voxels, Fig. 1B) and maximum (convex hull, Fig. 1C) volume for each plant. Finally, the green-232 

classified points were also multiplied by the average beam area to obtain a direct estimate of TLS 233 

leaf area (m2). The average beam area for each sagebrush was estimated based on the distance 234 

between the plant and the scanner and assuming a uniform beam divergence for each plant.  235 
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2.5. Statistical Analysis 236 

 To compare the accuracy of TLS-derived metrics to point-intercept sampling, each 237 

variable (height, canopy cover, volume, and TLS leaf area) was regressed against the SLA-238 

derived LAI estimate (SLA LAI). In all cases, the residuals and variance were non-normal, 239 

therefore both the response and independent variables were log-log transformed giving (Eq. 1): 240 

log��� = �log�	� + � 241 

where, L is SLA LAI, k and a are the regression slope and intercept parameters, and x is the 242 

independent variable. Back-transforming gives the power law equation (Eq. 2): 243 

� =  10�	� 244 

Power law equations are frequently found in biological systems with allometric scaling (Enquist 245 

et al., 1998). For example, sagebrush and global inflorescence biomass have been compared to 246 

stem and leaf biomass using log-log transformations of the data (Cleary et al., 2008). Another 247 

example is a common allometric function - the logarithmic relations between diameter at breast 248 

height or basal area and leaf area index, which produces a power law relation between mass per 249 

dry weight or area and stem diameter (Gower et al., 1999; Levia, 2008; Whittaker and 250 

Woodwell, 1967). 251 

An analysis of variance (ANOVA) was used to test the site-specificity of our sagebrush 252 

SLA measurements at our three study sites across the Snake River Plain. All statistical tests were 253 

performed with the R statistical package (R Core Team, 2013). Test assumptions were evaluated 254 

with a Shapiro-Wilk normality test and a Bartlett test of homogeneity of variance. The one-way 255 

ANOVA test determined if the means at the sites were all equal, and a Tukey’s honest significant 256 

difference test was then used to further analyze which pairs of means differed from each other. 257 
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3. Results and Discussion 258 

3.1. Specific Leaf Area 259 

Specific leaf area values at Hollister (42.3 ± 3.93 cm2g-1) and SCW (42.2 ± 6.49 cm2g-1) 260 

were larger than at RCEW (30.1 ± 2.03 cm2g-1; P = 0.025). Specific leaf area was thus found to 261 

be site-specific for sagebrush, similar to previous studies. For example, a study of sagebrush in 262 

Yellowstone National Park reported SLA of 45.2 – 54.6 cm2g-1 (Hoffman and Wambolt, 1996). 263 

Another dryland shrub, Retama sphaerocarpa (Boiss.), had SLA ranging from about 14 to 16 264 

cm2g-1 (Pugnaire et al., 1996). The lower SLA values at RCEW indicate thicker leaves, which 265 

contributes to a longer leaf life span, improved nutrient retention and protection of the leaves 266 

from desiccation (Ackerly et al., 2002; Poorter and Remkes, 1990). These plant adaptations may 267 

dampen the turnover of evapotranspiration (ET), which has been reported to return as much as 268 

90% of incoming precipitation to the atmosphere (Branson et al., 1976; Flerchinger et al., 1996; 269 

Wight et al., 1986). Overall, the significant differences in SLA in this study are likely attributed 270 

to some combination of differences in genetic variation, phenological development and 271 

environmental factors (e.g., microhabitat features) across the study sites. Ongoing work at the 272 

Hollister and RCEW sites includes more intensive SLA sampling that is concurrent with airborne 273 

hyperspectral (AVIRIS-NG) image acquisitions to explore spectral estimates of SLA on a per 274 

pixel basis. Several recent studies have demonstrated the use of spectral data collected or 275 

simulated at the leaf scale to estimate SLA in boreal forests (Serbin et al., 2014), leaf mass per 276 

unit area (the inverse of SLA) across a range of species (Cheng et. al., 2014) and live fuel 277 

moisture content and leaf dry mass in sagebrush (Qi et al., 2014). While sagebrush SLA values 278 

also fluctuate seasonally, future studies could minimize the influence of forbs and grasses on 279 

shrub LAI estimation error by sampling in late summer and early fall after senescence. 280 
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 281 

3.2. LAI Estimation 282 

 TLS-derived vegetation metrics and field-based point-intercept sampling performed 283 

similarly well when compared against SLA-derived LAI as a standard (Figs. 2C and 3). Canopy 284 

volumetric estimates derived from TLS performed well when regressed against SLA LAI, with 285 

3-D convex hull providing the highest estimates (r2 = 0.76, Fig. 3F), while 1 cm3 voxel volume 286 

explained 61% of the variation (r2 = 0.61, Fig. 3E). Shrub height estimates were a relatively poor 287 

predictor of LAI (r2 = 0.47, Fig. 3A) compared to canopy cover (r2 = 0. 73, Fig. 3B). 288 

Multiplying shrub height and canopy cover together provided no added benefit over canopy 289 

cover alone (r2 = 0.73, Fig. 3C). A direct estimate of leaf area from the green-classified points 290 

explained 65% of the variation in SLA LAI (r2 = 0.65, Fig. 3D). Finally, point-intercept 291 

sampling explained almost 80% of the variation (r2 = 0.78, Fig. 2C). Clark and Seyfried (2001) 292 

found similar results in sagebrush communities using point-intercept sampling with vertical pins 293 

(r2 = 0.82). The direct estimate using green-classified points may have been less effective than 294 

expected due to incomplete penetration of the TLS into the shrub canopy. In addition, one 295 

potential reason that TLS-derived convex hull volume did not improve on point-intercept 296 

sampling is that the volumetric measurement provided by the convex hull does not account for 297 

within canopy variation. This could be problematic for larger shrubs, which were excluded from 298 

our analysis. Therefore, study sites with a dominance of larger shrubs (> 1 m2) require further 299 

validation and possibly the use of other volumetric methods. 300 

Voxel size must be chosen with consideration of beam diameter, leaf size, and 301 

distribution of leaves (Beland et al., 2014; Cifuentes et al., 2014; García et al., 2015). Greaves et 302 

al. (2015) demonstrated that slightly larger voxels (3-5 cm, R2 > 0.9) from TLS greatly improved 303 

biomass estimation of two arctic shrub species (Salix pulchra Cham. and Betula nana L.) in 304 
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northern Alaska compared to 1 cm3 voxels (R2 = 0.38). Further, Greaves et al. (2015) found that 305 

for variable-range point clouds, a volume differencing approach was more effective than voxel 306 

counting. However, Hosoi and Omasa (2007) used smaller 5 mm voxels with TLS to 307 

successfully model leaf area density throughout the canopy of a mixed tree plantation in Tokyo, 308 

Japan, with mean absolute error of 12.7% when measurement zenith angle was 90° compared to 309 

57% error at 71°, suggesting that incidence angle may be just as important as voxel size. Beland 310 

et al. (2014) recommended voxels approximately 10 times the leaf size to minimize occlusion 311 

while retaining the detailed structural information inherent to TLS data. 312 
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 313 

Figure 3. Log-log regression equations and r2 values for prediction of specific leaf area (SLA) derived 314 

leaf area index (LAI) by terrestrial laser scanning (TLS) derived metrics: A) shrub height, B) canopy 315 

cover, C) height * canopy cover, D) TLS leaf area, E) voxel volume, and F) convex hull volume. 316 

 317 

 However, the convex hull and point-intercept sampling methods provided comparable 318 

results and this demonstrates the fine-scale capabilities of the TLS and the capacity to replace 319 

time-consuming field techniques. TLS also has the potential to scale from field to airborne or 320 
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satellite-based measurements. The TLS provides point data similar to point-intercept sampling, 321 

yet uses the same technology and delivers a similar 3-D point cloud to airborne laser scanning 322 

(ALS). TLS could be used as ground validation for ALS, in which simple metrics such as 323 

vegetation height (Luo et al., 2015) or percent vegetation cover can be calculated from lower 324 

density ALS data, and could be used for future work estimating sagebrush LAI across the 325 

landscape. For example, Mitchell et al. (2011) found height and canopy cover for sagebrush were 326 

consistently underestimated when using moderate resolution ALS data (9.46 pts m-2) but with 327 

compensation, accurate estimates of both shrub height (r2 = 0.86) and canopy cover (r2 = 0.78) 328 

could be obtained. A hierarchical method linking ground estimates to TLS, and TLS to ALS, 329 

may provide the ability to scale up from the plot to the watershed level (Li et al., 2015). Further, 330 

as ALS technology improves to higher point densities, volume measurements will become more 331 

accurate (Vierling et al., 2013) and more viable for estimating plant characteristics such as LAI 332 

and biomass. 333 

 Monitoring of vegetation structure and function at the plot-level (i.e., hectare) and 334 

landscape-level (i.e., tens to hundreds of km2) may also be accomplished with a combination of 335 

spectral and structural remote-sensing data. Estimation of vegetation characteristics in dryland 336 

ecosystems with spectral information alone (e.g., Landsat multispectral or AVIRIS hyperspectral 337 

data) has proven difficult due to high levels of land cover heterogeneity and pixel mixing (Okin 338 

et al., 2001). Yet, hyperspectral imagery with up to a hundred or more spectral bands has been 339 

shown to be useful, especially when combined with structural information from ALS (Mitchell et 340 

al., 2015). For species-specific parameters, hyperspectral imagery can provide species-level 341 

classification and top of canopy spectral information, while TLS or ALS provides the structural 342 

information necessary to capture multiple levels of canopy structure. Correspondingly, TLS-343 
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derived LAI could readily promote estimates of photosynthesis and evapotranspiration, which 344 

are crucial variables for climate change research. For example, within and between seasonal 345 

changes in LAI might be obtained by TLS due to its portability and relative ease-of-use in the 346 

field. These changes of LAI over time could then be used to estimate how evapotranspiration of 347 

sagebrush communities change in the context of warming (Polley et al., 2013). Furthermore LAI, 348 

coupled with measurements of vegetation function, such as nitrogen from hyperspectral data will 349 

help model CO2 uptake in these systems (Mitchell et al., 2012). Expanded ground-based LAI 350 

measurements in dryland shrub environments will improve our ability to develop and estimate 351 

LAI products at the airborne and satellite scales. Spatially-explicit models of LAI, derived from 352 

laser data acquired at these broader scales, can help with reducing uncertainties associated with 353 

carbon and water flux models in drylands and detecting subtle ecosystem responses to 354 

disturbance over time. 355 

3.3. Conclusions 356 

Findings from this study support those at other sites and with other shrub species, which 357 

indicate SLA can be site specific. Consequently, SLA sampling is advisable for new sites, 358 

particularly those in differing climatic and edaphic conditions, rather than simply accepting and 359 

applying published average values. More importantly, we demonstrated that models involving 360 

TLS-derived canopy volume, canopy cover, or laser-reflectance values (i.e., green vs. non-green 361 

points) can explain 65-76% of the variance in SLA-derived LAI of sagebrush. A 3-D convex hull 362 

analysis provided the most accurate prediction (r2 = 0.76) of SLA-derived LAI using TLS data. 363 

This performance was quite similar to that obtained using a traditional field technique, point-364 

intercept sampling but at what is likely a substantial reduction in field-time costs. 365 
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These results, coupled with previous studies (e.g., Greaves et al., 2015; Olsoy et al., 366 

2014) suggest that TLS is a promising technology for quantifying vegetation structure in shrub-367 

dominated landscapes. With further validation of larger shrubs (e.g. > 1 m2) and additional 368 

woody species, TLS may be a rapid and accurate tool for indirectly measuring LAI in dryland 369 

shrub environments.  370 
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